65
In silico identification of auxiliary genes
required for
-lactam resistance
Volumen 14 Número 1 - 2023
synthesis are required for recruitment
of MurJ to midcell during cell division in
Escherichia coli. Molecular Microbiology.
2018;109(6):855-84.
17. Wacnik K, Rao VA, Chen X, Lafage L, Pazos
M, Booth S, et al. Penicillin-Binding Protein
1 (PBP1) of Staphylococcus aureus Has
Mulple Essenal Funcons in Cell Division.
mBio. 2022;13(4):e0066922.
18. da Costa TM, de Oliveira CR, Chambers HF,
Chaerjee SS. PBP4: A New Perspecve on
Staphylococcus aureus β-Lactam Resistance.
Microorganisms. 2018;6(3).
19. Roch M, Lelong E, Panasenko OO, Sierra
R, Renzoni A, Kelley WL. Thermosensive
PBP2a requires extracellular folding factors
PrsA and HtrA1 for Staphylococcus aureus
MRSA β-lactam resistance. Commun Biol.
2019;2:417.
20. Dalal V, Kumar P, Rakhaminov G, Qamar
A, Fan X, Hunter H, et al. Repurposing an
Ancient Protein Core Structure: Structural
Studies on FmtA, a Novel Esterase of
Staphylococcus aureus. Journal of Molecular
Biology. 2019;431(17):3107-23.
21. G CB, Sahukhal GS, Elasri MO. Role of the
msaABCR Operon in Cell Wall Biosynthesis,
Autolysis, Integrity, and Anbioc Resistance
in Staphylococcus aureus. Anmicrob
Agents Chemother. 2019;63(10).
22. Walter A, Unsleber S, Rismondo J, Jorge AM,
Peschel A, Gründling A, et al. Phosphoglycerol-
type wall and lipoteichoic acids are
enanomeric polymers dierenated by the
stereospecic glycerophosphodiesterase
GlpQ. J Biol Chem. 2020;295(12):4024-34.
23. Chee Wezen X, Chandran A, Eapen RS,
Waters E, Bricio-Moreno L, Tosi T, et al.
Structure-Based Discovery of Lipoteichoic
Acid Synthase Inhibitors. Journal of
Chemical Informaon and Modeling.
2022;62(10):2586-99.
24. Vickery CR, Wood BM, Morris HG, Losick R,
Walker S. Reconstuon of Staphylococcus
aureus Lipoteichoic Acid Synthase Acvity
Idenes Congo Red as a Selecve Inhibitor.
Journal of the American Chemical Society.
2018;140(3):876-9.
25. Zeng J, Plag J, Cheng TY, Ahmed S, Skaf Y,
Potluri LP, et al. Protein kinases PknA and PknB
independently and coordinately regulate
essenal Mycobacterium tuberculosis
physiologies and anmicrobial suscepbility.
PLoS Pathog. 2020;16(4):e1008452.
26. Jenul C, Horswill AR. Regulaon of
Staphylococcus aureus Virulence. Microbiol
Spectr. 2019;7(2).
27. Bleul L, Francois P, Wolz C. Two-Component
Systems of S. aureus: Signaling and Sensing
Mechanisms. Genes (Basel). 2021;13(1).
28. Miragaia M. Factors Contribung to the
Evoluon of mecA-Mediated β-lactam
Resistance in Staphylococci: Update and New
Insights From Whole Genome Sequencing
(WGS). Froners in Microbiology. 2018;9.
29. Tooke CL, Hinchlie P, Bragginton EC,
Colenso CK, Hirvonen VHA, Takebayashi
Y, et al. β-Lactamases and β-Lactamase
Inhibitors in the 21st Century. J Mol Biol.
2019;431(18):3472-500.
30. Yadav AK, Espaillat A, Cava F. Bacterial
Strategies to Preserve Cell Wall Integrity
Against Environmental Threats. Front
Microbiol. 2018;9:2064.
31. De Lencastre H, Wu SW, Pinho MG,
Ludovice AM, Filipe S, Gardete S, et al.
Anbioc resistance as a stress response:
complete sequencing of a large number of
chromosomal loci in Staphylococcus aureus
strain COL that impact on the expression of
resistance to methicillin. Microb Drug Resist.
1999;5(3):163-75.
32. Xu J-Z, Ruan H-Z, Liu L-M, Wang L-P, Zhang
W-G. Overexpression of thermostable
meso-diaminopimelate dehydrogenase
to redirect diaminopimelate pathway for
increasing L-lysine producon in Escherichia
coli. Scienc Reports. 2019;9(1):2423.
33. Boyd SE, Livermore DM, Hooper DC, Hope
WW. Metallo-β-Lactamases: Structure,
Funcon, Epidemiology, Treatment
Opons, and the Development Pipeline.
Anmicrobial Agents and Chemotherapy.
2020;64(10):e00397-20.
34. Aslanli A, Domnin M, Stepanov N, Efremenko
E. "Universal" Anmicrobial Combinaon of
Bacitracin and His(6)-OPH with Lactonase
Acvity, Acng against Various Bacterial and
Yeast Cells. Int J Mol Sci. 2022;23(16).
35. Berger-Bächi B. Inseronal inacvaon of
staphylococcal methicillin resistance by